ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนัก: พื้นฐานหลายปีช่างเทคนิคพบปัญหาสองอย่างเกี่ยวกับค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย ปัญหาแรกอยู่ในกรอบเวลาของค่าเฉลี่ยเคลื่อนที่ (MA) นักวิเคราะห์ทางเทคนิคส่วนใหญ่เชื่อว่าการดำเนินการด้านราคา การเปิดหรือปิดราคาหุ้นไม่เพียงพอที่จะขึ้นอยู่กับการคาดการณ์อย่างถูกต้องสัญญาณซื้อหรือขายของการกระทำแบบไขว้ MAs เพื่อแก้ปัญหานี้นักวิเคราะห์จึงกำหนดน้ำหนักให้มากที่สุดกับข้อมูลราคาล่าสุดโดยใช้ค่าเฉลี่ยเคลื่อนที่แบบเรียบ (EMA) (เรียนรู้เพิ่มเติมเกี่ยวกับ Exploring Average Moved Average Weighed) ตัวอย่างเช่นใช้ MA 10 วันนักวิเคราะห์จะใช้ราคาปิดของวันที่ 10 และคูณเลขนี้เป็น 10 วันที่เก้าโดยเก้าแปดวินาที วันโดยแปดและอื่น ๆ เพื่อแรกของ MA เมื่อรวมแล้วนักวิเคราะห์จะหารตัวเลขด้วยการเพิ่มตัวคูณ ถ้าคุณเพิ่มตัวคูณของตัวอย่าง MA 10 วันจำนวนเป็น 55 ตัวบ่งชี้นี้เรียกว่าค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักเชิงเส้น (สำหรับการอ่านที่เกี่ยวข้องให้ดูที่ค่าเฉลี่ยเคลื่อนที่แบบธรรมดาทำให้แนวโน้มโดดเด่น) ช่างเทคนิคหลายคนเชื่อมั่นในค่าเฉลี่ยเคลื่อนที่แบบเรียบ (exponentially smoothed moving average - EMA) ตัวบ่งชี้นี้ได้รับการอธิบายด้วยวิธีต่างๆมากมายที่ทำให้นักเรียนและนักลงทุนสับสน บางทีคำอธิบายที่ดีที่สุดมาจาก John J. Murphys การวิเคราะห์ทางเทคนิคของตลาดการเงิน (เผยแพร่โดย New York Institute of Finance, 1999): ค่าเฉลี่ยเคลื่อนที่แบบเรียบเรียงตามที่อธิบายถึงปัญหาทั้งสองที่เกี่ยวข้องกับค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย ประการแรกค่าเฉลี่ยที่ได้รับการจัดแจงโดยการชี้แจงให้น้ำหนักที่มากขึ้นกับข้อมูลล่าสุด ดังนั้นจึงเป็นค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนัก แต่ในขณะที่ให้ความสำคัญน้อยกว่ากับข้อมูลราคาในอดีตจะรวมถึงการคำนวณข้อมูลทั้งหมดในชีวิตของเครื่องมือ นอกจากนี้ผู้ใช้ยังสามารถปรับน้ำหนักเพื่อให้น้ำหนักมากขึ้นหรือน้อยกว่ากับราคาวันล่าสุดซึ่งจะเพิ่มเป็นเปอร์เซ็นต์ของมูลค่าวันก่อนหน้า ผลรวมของค่าเปอร์เซ็นต์ทั้งสองจะเพิ่มขึ้นเป็น 100 ตัวอย่างเช่นราคาสุดท้ายของวันอาจมีการกำหนดน้ำหนัก 10 (.10) ซึ่งเพิ่มลงในน้ำหนักของวันก่อนหน้า 90 (.90) นี้จะช่วยให้วันสุดท้าย 10 ของน้ำหนักรวม ซึ่งจะเท่ากับค่าเฉลี่ย 20 วันโดยให้ราคาวันสุดท้ายมีมูลค่าน้อยกว่า 5 (.05) กราฟแสดงดัชนี Nasdaq Composite จากสัปดาห์แรกตั้งแต่เดือนสิงหาคม 2543 ถึงวันที่ 1 มิถุนายน พ. ศ. 2544 ตามที่คุณเห็นได้ชัด EMA ซึ่งในกรณีนี้ใช้ข้อมูลราคาปิดผ่าน a ระยะเวลาเก้าวันมีสัญญาณขายที่ชัดเจนในวันที่ 8 กันยายน (มีเครื่องหมายลูกศรลงสีดำ) นี่เป็นวันที่ดัชนีทะลุแนว 4,000 จุด ลูกศรสีดำที่สองแสดงอีกขาลงที่ช่างเทคนิคกำลังคาดหวัง Nasdaq ไม่สามารถสร้างปริมาณและดอกเบี้ยได้เพียงพอจากนักลงทุนรายย่อยเพื่อทำลายเครื่องหมาย 3,000 จากนั้นก็พุ่งตัวลงสู่จุดต่ำสุดที่ 1619.58 ในวันที่ 4 เม. ย. แนวโน้มการขึ้นลงของวันที่ 12 เมษายนจะมีเครื่องหมายลูกศร ดัชนีปิดที่ 1,961.46 จุดและนักเทคนิคเริ่มเห็นผู้จัดการกองทุนสถาบันเริ่มที่จะรับข้อเสนอพิเศษบางอย่างเช่น Cisco, Microsoft และปัญหาด้านพลังงานบางส่วน (อ่านบทความที่เกี่ยวข้องของเรา: การย้ายซองจดหมายโดยเฉลี่ย: ปรับแต่งเครื่องมือการเทรดยอดนิยมและการตีกลับโดยเฉลี่ย) การวัดความสัมพันธ์ระหว่างการเปลี่ยนแปลงปริมาณที่ต้องการสินค้าและการเปลี่ยนแปลงราคา ราคา. มูลค่าตลาดรวมของหุ้นทั้งหมดของ บริษัท ที่โดดเด่น มูลค่าหลักทรัพย์ตามราคาตลาดคำนวณจากการคูณ Frexit ย่อมาจาก quotFrench exitquot เป็นเศษเสี้ยวของคำว่า Brexit ของฝรั่งเศสซึ่งเกิดขึ้นเมื่อสหราชอาณาจักรได้รับการโหวต คำสั่งซื้อที่วางไว้กับโบรกเกอร์ที่รวมคุณลักษณะของคำสั่งหยุดกับคำสั่งซื้อที่ จำกัด ไว้ คำสั่งหยุดการสั่งซื้อจะ รอบการจัดหาเงินทุนที่นักลงทุนซื้อหุ้นจาก บริษัท ในราคาที่ต่ำกว่าการประเมินมูลค่าวางไว้ ทฤษฎีเศรษฐศาสตร์ของการใช้จ่ายทั้งหมดในระบบเศรษฐกิจและผลกระทบต่อผลผลิตและอัตราเงินเฟ้อ เศรษฐศาสตร์ของเคนส์ได้รับการพัฒนา สำเนาลิขสิทธิ์ เนื้อหาใน InventoryOps ได้รับการคุ้มครองลิขสิทธิ์และไม่สามารถเผยแพร่ได้ เมื่อคนแรกพบคำว่า Smoothing Exponential พวกเขาอาจคิดว่าเสียงเหมือนนรกของมากเรียบ สิ่งที่เรียบคือ จากนั้นพวกเขาก็เริ่มวาดภาพการคำนวณทางคณิตศาสตร์ที่ซับซ้อนซึ่งน่าจะต้องการการศึกษาระดับปริญญาในด้านคณิตศาสตร์เพื่อให้เข้าใจและหวังว่าจะมีฟังก์ชัน Excel ที่มีอยู่ในตัวหากจำเป็นต้องทำ ความเป็นจริงของการทำให้เรียบเป็นทวีคูณน้อยกว่าที่น่าทึ่งและบาดแผลน้อยมาก ความจริงคือการทำให้เรียบเรียบเป็นเรื่องง่ายที่คำนวณได้ง่าย มันก็มีชื่อที่ซับซ้อนเพราะสิ่งที่เกิดขึ้นในทางเทคนิคอันเป็นผลมาจากการคำนวณง่ายๆนี้เป็นเพียงเล็กน้อยที่ซับซ้อน เพื่อให้เข้าใจถึงการทำให้เรียบขึ้นเรื่อย ๆ จะช่วยให้เริ่มต้นด้วยแนวคิดทั่วไปในการทำให้เรียบและวิธีการทั่วไปอื่น ๆ ที่ใช้เพื่อให้เกิดความราบเรียบ Smoothing คืออะไรการเรียบเป็นขั้นตอนทางสถิติที่พบบ่อยมาก ในความเป็นจริงเรามักพบข้อมูลที่ราบรื่นในรูปแบบต่างๆในชีวิตประจำวันของเรา เมื่อใดก็ตามที่คุณใช้ค่าเฉลี่ยในการอธิบายสิ่งใดคุณใช้หมายเลขที่ราบรื่น ถ้าคุณคิดถึงเหตุผลที่คุณใช้ค่าเฉลี่ยในการอธิบายบางสิ่งบางอย่างคุณจะเข้าใจแนวคิดเรื่องการทำให้ราบเรียบได้อย่างรวดเร็ว ตัวอย่างเช่นเราเพิ่งมีประสบการณ์ฤดูหนาวที่อบอุ่นที่สุดในเร็กคอร์ด เราจะเริ่มต้นด้วยชุดข้อมูลอุณหภูมิที่สูงและต่ำเป็นประจำทุกวันสำหรับช่วงเวลาที่เราเรียกว่าฤดูหนาวสำหรับแต่ละปีในประวัติศาสตร์ที่บันทึกไว้ แต่นั่นทำให้เรามีตัวเลขที่กระโดดไปรอบ ๆ นิดหน่อย (ไม่เหมือนทุกวันในฤดูหนาวนี้ก็อุ่นขึ้นกว่าวันที่เหมือนกันจากทุกปีที่ผ่านมา) เราจำเป็นต้องมีหมายเลขที่ลบข้อมูลทั้งหมดนี้ออกจากข้อมูลเพื่อให้เราเปรียบเทียบได้ง่ายขึ้นในช่วงฤดูหนาว การลบการกระโดดไปรอบ ๆ ในข้อมูลเรียกว่าการทำให้เรียบและในกรณีนี้เราสามารถใช้ค่าเฉลี่ยที่เรียบง่ายเพื่อให้การเรียบลื่น ในการคาดการณ์ความต้องการเราใช้การปรับให้เรียบเพื่อลบรูปแบบที่สุ่ม (เสียง) ออกจากความต้องการในอดีตของเรา วิธีนี้ช่วยให้เราสามารถระบุรูปแบบความต้องการได้ดีขึ้น (ตามหลักแนวโน้มและฤดูกาล) และระดับความต้องการที่สามารถใช้ในการประมาณการความต้องการในอนาคตได้ เสียงดังกล่าวเป็นแนวคิดเดียวกับการกระโดดรายวันของข้อมูลอุณหภูมิ ไม่น่าแปลกใจที่คนส่วนใหญ่จะเอาเสียงรบกวนออกจากประวัติความต้องการคือการใช้ค่าเฉลี่ยอย่างง่ายโดยเฉพาะค่าเฉลี่ยเคลื่อนที่ ค่าเฉลี่ยเคลื่อนที่จะใช้ระยะเวลาที่กำหนดไว้ล่วงหน้าเพื่อคำนวณค่าเฉลี่ยและช่วงเวลาเหล่านี้จะเลื่อนตามเวลาที่ผ่านไป ตัวอย่างเช่นถ้า Im ใช้ค่าเฉลี่ยเคลื่อนที่ 4 เดือนและวันนี้คือวันที่ 1 พฤษภาคม Im ใช้ค่าเฉลี่ยของความต้องการที่เกิดขึ้นในเดือนมกราคมกุมภาพันธ์มีนาคมและเมษายน ในวันที่ 1 มิถุนายนฉันจะใช้ความต้องการตั้งแต่เดือนกุมภาพันธ์มีนาคมเมษายนและพฤษภาคม ค่าเฉลี่ยถ่วงน้ำหนัก เมื่อใช้ค่าเฉลี่ยเราใช้ความสำคัญ (น้ำหนัก) เดียวกันกับแต่ละค่าในชุดข้อมูล ในค่าเฉลี่ยเคลื่อนที่ 4 เดือนแต่ละเดือนมีค่าเฉลี่ยเคลื่อนที่ 25 ค่า เมื่อใช้ประวัติความต้องการเพื่อคาดการณ์ความต้องการในอนาคต (และแนวโน้มในอนาคตโดยเฉพาะอย่างยิ่ง) เหตุผลที่จะสรุปได้ว่าคุณต้องการให้ประวัติล่าสุดมีผลกระทบมากขึ้นกับการคาดการณ์ของคุณ เราสามารถปรับการคำนวณค่าเฉลี่ยเคลื่อนที่ของเราเพื่อใช้น้ำหนักที่ต่างกันในแต่ละช่วงเวลาเพื่อให้ได้ผลลัพธ์ที่ต้องการ เราแสดงน้ำหนักเหล่านี้เป็นเปอร์เซ็นต์และน้ำหนักทั้งหมดของทุกช่วงเวลาต้องเพิ่มขึ้น 100 ดังนั้นหากเราตัดสินใจว่าเราต้องการใช้ 35 เป็นน้ำหนักในช่วงเวลาใกล้เคียงกับค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนัก 4 เดือนของเราเราสามารถ ลบ 35 ออกจาก 100 เพื่อหาว่าเราเหลืออีก 65 คนในช่วงเวลาอื่น ๆ ตัวอย่างเช่นเราอาจจบลงด้วยน้ำหนักที่ 15, 20, 30 และ 35 ตามลำดับเป็นเวลา 4 เดือน (15 20 30 35 100) เรียบ ถ้าเรากลับไปใช้แนวความคิดในการใช้น้ำหนักกับช่วงเวลาล่าสุด (เช่น 35 ในตัวอย่างก่อนหน้า) และการกระจายน้ำหนักที่เหลือ (คำนวณโดยการหักน้ำหนักงวดล่าสุดของ 35 จาก 100 เป็น 65) เรามี หน่วยการสร้างพื้นฐานสำหรับการคำนวณการเรียบของเราชี้แจง อินพุทควบคุมของการคำนวณการคำนวณความเร่งด่วนเป็นที่รู้จักกันว่าเป็นปัจจัยการทำให้ราบรื่น (smoothing factor) หรือเรียกอีกอย่างว่า smoothing constant) มันเป็นหลักหมายถึงการถ่วงน้ำหนักที่ใช้กับงวดล่าสุดความต้องการ ดังนั้นที่เราใช้ 35 เป็นน้ำหนักสำหรับงวดล่าสุดในการคำนวณถัวเฉลี่ยถ่วงน้ำหนักเราสามารถเลือกที่จะใช้ 35 เป็นปัจจัยการทำให้ราบเรียบในการคำนวณการคำนวณความเร่งด่วนเพื่อให้ได้ผลเช่นเดียวกัน ความแตกต่างกับการคำนวณการให้ความเรียบแบบเลขยกกำลังคือการที่เราต้องคำนวณน้ำหนักให้มากที่สุดเท่าที่จะนำมาใช้กับแต่ละช่วงเวลาก่อนหน้านี้ได้โดยใช้ปัจจัยการทำให้ราบเรียบโดยอัตโนมัติ ดังนั้นนี่เป็นส่วนที่อธิบาย ถ้าเราใช้ 35 เป็นปัจจัยการทำให้ราบเรียบการถ่วงน้ำหนักของความต้องการช่วงเวลาล่าสุดจะเป็น 35 การถ่วงน้ำหนักของงวดถัดไปที่ต้องการ (ระยะก่อนหน้าล่าสุด) จะเท่ากับ 65 จาก 35 (65 มาจากหัก 35 จาก 100) นี้เท่ากับ 22.7 ถ่วงน้ำหนักในช่วงเวลานั้นถ้าคุณทำคณิตศาสตร์ ความต้องการระยะเวลาต่อไปครั้งต่อไปคือ 65 จาก 65 ใน 35 ซึ่งเท่ากับ 14.79 ช่วงก่อนหน้านั้นจะมีน้ำหนัก 65 ถึง 65 จาก 65 ใน 35 ซึ่งเท่ากับ 9.61 และอื่น ๆ และสิ่งนี้จะย้อนกลับไปในทุกช่วงเวลาก่อนหน้าของคุณตลอดระยะเวลาย้อนกลับไปจนถึงจุดเริ่มต้นของเวลา (หรือจุดที่คุณเริ่มต้นใช้การเพิ่มความล คุณอาจคิดว่าเรื่องนี้ดูเหมือนจะเป็นเรื่องคณิตศาสตร์มาก แต่ความงามของการคำนวณการคำนวณหาผลคูณแบบเอกซ์โพเนนเชียลคือแทนที่จะต้องคำนวณใหม่ในแต่ละช่วงเวลาก่อนหน้านี้ทุกครั้งที่คุณได้รับความต้องการช่วงเวลาใหม่ ๆ คุณก็ใช้ผลลัพธ์ของการคำนวณการคำนวณความเร่งด่วนจากช่วงก่อนหน้าเพื่อแสดงช่วงก่อนหน้าทั้งหมด คุณสับสนยังจะทำให้รู้สึกมากขึ้นเมื่อเราดูที่การคำนวณที่เกิดขึ้นจริงโดยปกติเราจะอ้างถึงผลลัพธ์ของการคำนวณการเรียบเป็น exponential คาดการณ์ระยะเวลาถัดไป ในความเป็นจริงการคาดการณ์ที่ดีที่สุดต้องการการทำงานเพียงเล็กน้อย แต่สำหรับวัตถุประสงค์ของการคำนวณเฉพาะนี้เราจะอ้างถึงว่าเป็นการคาดการณ์ การคำนวณการคำนวณหาผลคูณเป็นดังนี้: ความต้องการของช่วงเวลาล่าสุดคูณด้วยปัจจัยการปรับให้เรียบ PLUS ระยะเวลาล่าสุดที่คาดการณ์ไว้คูณด้วย (หนึ่งลบด้วยปัจจัยการทำให้ราบเรียบ) D ช่วงล่าสุดต้องการ S ปัจจัยการทำให้ราบรื่นแสดงในรูปแบบทศนิยม (ดังนั้น 35 จะแสดงเป็น 0.35) F คาดการณ์ระยะเวลาล่าสุด (ผลลัพธ์ของการคำนวณการปรับให้เรียบจากงวดก่อนหน้า) OR (สมมติว่าค่าการปรับให้เรียบ 0.35) (D 0.35) (F 0.65) มันไม่ง่ายมากนัก ที่คุณเห็นทั้งหมดที่เราต้องใช้สำหรับการป้อนข้อมูลที่นี่คือความต้องการช่วงเวลาล่าสุดและการคาดการณ์ช่วงเวลาล่าสุด เราใช้ปัจจัยการทำให้ราบเรียบ (ถ่วงน้ำหนัก) เป็นระยะเวลาล่าสุดเช่นเดียวกับที่เราใช้ในการคำนวณถัวเฉลี่ยถ่วงน้ำหนัก จากนั้นเราจะใช้การถ่วงน้ำหนักที่เหลือ (1 ลบด้วยปัจจัยการให้เรียบ) กับการคาดการณ์ช่วงเวลาล่าสุด เนื่องจากการคาดการณ์ช่วงเวลาล่าสุดได้รับการสร้างขึ้นจากความต้องการของช่วงเวลาก่อนหน้าและการคาดการณ์ในช่วงก่อนหน้าซึ่งขึ้นอยู่กับความต้องการในช่วงก่อนหน้านั้นและการคาดการณ์ในช่วงก่อนหน้านั้นซึ่งขึ้นอยู่กับความต้องการในช่วงก่อน และการคาดการณ์ในช่วงก่อนหน้านั้นซึ่งขึ้นอยู่กับระยะเวลาก่อนหน้านั้น ดีคุณสามารถดูความต้องการทั้งหมดของช่วงเวลาก่อนหน้านี้ได้อย่างไรในการคำนวณโดยไม่ต้องย้อนกลับและคำนวณอะไรใหม่ และ thats สิ่งที่ขับรถความนิยมเริ่มต้นของการเรียบชี้แจง ไม่ได้เพราะมันเป็นงานที่ดีกว่าการปรับให้เรียบโดยเฉลี่ยมากกว่าค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักได้เนื่องจากมันง่ายกว่าที่จะคำนวณในโปรแกรมคอมพิวเตอร์ และเนื่องจากคุณไม่จำเป็นต้องคิดถึงการถ่วงน้ำหนักที่ให้ช่วงเวลาก่อนหน้าหรือระยะเวลาก่อนหน้าในการใช้งานเท่าที่คุณจะคำนวณได้จากค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนัก และเพราะมันฟังดูเย็นกว่าค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนัก ในความเป็นจริงอาจเป็นที่ถกเถียงกันอยู่ว่าค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักให้ความยืดหยุ่นมากขึ้นเนื่องจากคุณสามารถควบคุมน้ำหนักของช่วงก่อนหน้าได้มากขึ้น ความเป็นจริงคือสิ่งเหล่านี้สามารถให้ผลลัพธ์ที่น่าพอใจได้ดังนั้นทำไมไม่ไปกับการออกเสียงที่ง่ายและเย็น Exponential Smoothing in Excel ให้ดูวิธีนี้จริงจะดูในกระดาษคำนวณที่มีข้อมูลจริง สำเนาลิขสิทธิ์ เนื้อหาใน InventoryOps ได้รับการคุ้มครองลิขสิทธิ์และไม่สามารถเผยแพร่ได้ ในรูปที่ 1A เรามีสเปรดชีต Excel ที่มีความต้องการใช้งานเป็นเวลา 11 สัปดาห์และมีการคาดการณ์แบบเรียบเรียงตามที่คำนวณได้จากความต้องการดังกล่าว Ive ใช้ค่า smoothing factor 25 (0.25 ในเซลล์ C1) ปัจจุบันเซลล์ที่ใช้งานอยู่คือเซลล์ M4 ซึ่งมีการคาดการณ์สำหรับสัปดาห์ที่ 12 คุณสามารถดูได้ในแถบสูตรสูตรคือ (L3C1) (L4 (1-C1)) ดังนั้นปัจจัยการผลิตเพียงอย่างเดียวในการคำนวณนี้คือความต้องการของช่วงเวลาก่อนหน้า (เซลล์ L3) การพยากรณ์ช่วงก่อนหน้า (เซลล์ L4) และปัจจัยการทำให้ราบเรียบ (เซลล์ C1 แสดงเป็นข้อมูลอ้างอิงเซลล์สัมบูรณ์ C1) เมื่อเราเริ่มต้นการคำนวณการทำให้เรียบโดยใช้เลขแจงเราจำเป็นต้องเสียบค่าสำหรับการคาดการณ์ที่ 1 ด้วยตนเอง ดังนั้นใน Cell B4 แทนที่จะเป็นสูตรเราจึงพิมพ์ความต้องการจากช่วงเวลาเดียวกันกับที่คาดไว้ ในเซลล์ C4 เรามีการคำนวณการปันส่วนเป็นครั้งที่ 1 (B3C1) (B4 (1-C1)) จากนั้นเราสามารถคัดลอกเซลล์ C4 และวางในเซลล์ D4 ผ่าน M4 เพื่อกรอกข้อมูลในส่วนที่เหลือของเซลล์คาดการณ์ของเรา ขณะนี้คุณสามารถดับเบิลคลิกที่เซลล์คาดการณ์ใด ๆ เพื่อดูข้อมูลได้จากช่วงคาดการณ์ของเซลล์ก่อนหน้าและเซลล์ความต้องการช่วงก่อนหน้า ดังนั้นการคำนวณการคำนวณตามความเร่งด่วนแต่ละครั้งจึงสืบทอดผลลัพธ์ของการคำนวณการคำนวณหาค่าความละเอียดแบบเอกซอนก่อนหน้านี้ นั่นคือความต้องการของแต่ละงวดก่อนหน้านี้เป็นอย่างไรในการคำนวณระยะเวลาล่าสุดแม้ว่าการคำนวณดังกล่าวไม่ได้อ้างอิงถึงช่วงเวลาก่อนหน้านี้โดยตรงก็ตาม ถ้าคุณต้องการได้รับแฟนซีคุณสามารถใช้ฟังก์ชัน Excels trace precedents เมื่อต้องการทำเช่นนี้ให้คลิกที่เซลล์ M4 จากนั้นบนแถบเครื่องมือริบบิ้น (Excel 2007 หรือ 2010) คลิกแท็บสูตรแล้วคลิกสืบค้นย้อนกลับ มันจะวาดเส้นเชื่อมต่อไปยังระดับที่ 1 ของ precedent แต่ถ้าคุณคลิกที่ Trace Precedents จะวาดเส้นเชื่อมต่อไปยังงวดก่อน ๆ ทั้งหมดเพื่อแสดงความสัมพันธ์ที่สืบทอดกัน ตอนนี้เราจะมาดูว่าการเพิ่มประสิทธิภาพแบบเสแสร้งทำได้ดีแค่ไหนสำหรับเรา รูปที่ 1B แสดงแผนภูมิเส้นของความต้องการและการคาดการณ์ของเรา กรณีที่คุณเห็นว่าการคาดการณ์ที่ราบเรียบตามลำดับส่วนมากจะช่วยขจัดความหยาบคาย (กระโดดไปรอบ ๆ ) จากความต้องการรายสัปดาห์ แต่ยังคงสามารถปฏิบัติตามสิ่งที่ดูเหมือนจะเป็นความต้องการที่สูงขึ้น นอกจากนี้คุณจะสังเกตเห็นว่าเส้นคาดการณ์ที่ราบเรียบมีแนวโน้มที่จะต่ำกว่าเส้นความต้องการ นี้เป็นที่รู้จักกันเป็นล้าสมัยแนวโน้มและเป็นผลข้างเคียงของกระบวนการราบเรียบ เมื่อใดก็ตามที่คุณใช้การทำให้ราบเรียบเมื่อมีแนวโน้มเกิดขึ้นการคาดการณ์ของคุณจะล่าช้ากว่าแนวโน้ม นี้เป็นจริงสำหรับเทคนิคการทำให้ราบเรียบใด ๆ ในความเป็นจริงหากเราดำเนินการต่อสเปรดชีตนี้ต่อไปและเริ่มป้อนตัวเลขความต้องการที่ต่ำลง (ทำให้มีแนวโน้มลดลง) คุณจะเห็นความต้องการลดลงของเส้นอุปสงค์และเส้นแนวโน้มจะเลื่อนไปเหนือก่อนที่จะเริ่มตามแนวโน้มลดลง Thats ทำไมฉันได้กล่าวถึงก่อนหน้านี้ออกจากการคำนวณการคำนวณเรียบที่เราเรียกว่าการคาดการณ์ยังคงต้องทำงานเพิ่มเติมบางอย่าง มีการคาดการณ์มากขึ้นกว่าเพียงแค่เรียบออกกระแทกในความต้องการ เราจำเป็นต้องปรับปรุงเพิ่มเติมสำหรับสิ่งต่างๆเช่นความล้าตามฤดูกาลฤดูกาลเหตุการณ์ที่เป็นที่รู้จักซึ่งอาจมีผลต่อความต้องการ ฯลฯ แต่สิ่งที่อยู่นอกเหนือขอบเขตของบทความนี้ คุณอาจจะใช้เป็นคำเช่นการเพิ่มความเรียบแบบเลขสองเท่าและการปรับให้เรียบแบบสามขั้นแทน คำเหล่านี้เป็นบิตที่ทำให้เข้าใจผิดเนื่องจากคุณไม่จำเป็นต้องปรับให้เรียบตามความต้องการหลายครั้ง (คุณสามารถทำได้ถ้าต้องการ แต่ไม่ใช่ประเด็นที่นี่) คำเหล่านี้แสดงถึงการใช้การเพิ่มความลื่นในเชิงตัวเลขในองค์ประกอบเพิ่มเติมของการคาดการณ์ ดังนั้นด้วยการเรียบแบบเรียบง่ายคุณจึงปรับความต้องการพื้นฐานได้ แต่ด้วยการปรับให้เรียบแบบทวีคูณเป็นสองเท่าคุณจะปรับความต้องการพื้นฐานพร้อมกับแนวโน้มและด้วยการเรียบเรียบแบบสามขั้นตอนคุณจะทำให้ความต้องการพื้นฐานลดลงพร้อมกับแนวโน้มบวกกับฤดูกาล คำถามอื่น ๆ ที่ถามบ่อยเกี่ยวกับการทำให้เรียบเป็นทวีคูณคือสิ่งที่ฉันจะได้รับปัจจัยการทำให้ราบเรียบของฉันไม่มีคำตอบที่น่าอัศจรรย์ที่นี่คุณต้องทดสอบปัจจัยการทำให้ราบเรียบต่างๆพร้อมข้อมูลความต้องการของคุณเพื่อดูว่าอะไรทำให้คุณได้รับผลลัพธ์ที่ดีที่สุด มีการคำนวณที่สามารถตั้งค่า (และเปลี่ยน) ตัวปรับความเรียบได้โดยอัตโนมัติ ฤดูใบไม้ร่วงเหล่านี้อยู่ภายใต้การปรับให้เรียบแบบปรับได้ แต่คุณต้องระมัดระวังกับพวกเขา ไม่มีคำตอบที่สมบูรณ์แบบและคุณไม่ควรสุ่มสี่สุ่มห้าใช้การคำนวณใด ๆ โดยไม่มีการทดสอบอย่างละเอียดและพัฒนาความเข้าใจอย่างถ่องแท้ในสิ่งที่คำนวณได้ นอกจากนี้คุณควรใช้สถานการณ์สมมติแบบใดหากดูว่าการคำนวณเหล่านี้ตอบสนองต่อการเปลี่ยนแปลงความต้องการที่อาจไม่มีอยู่ในข้อมูลความต้องการที่คุณกำลังใช้สำหรับการทดสอบ ตัวอย่างข้อมูลที่ฉันใช้ก่อนหน้านี้เป็นตัวอย่างที่ดีมากสำหรับสถานการณ์ที่คุณต้องทดสอบสถานการณ์อื่น ๆ ตัวอย่างข้อมูลดังกล่าวแสดงถึงแนวโน้มที่มีแนวโน้มสูงขึ้นอย่างมาก บริษัท ขนาดใหญ่หลายแห่งที่มีซอฟต์แวร์คาดการณ์ราคาแพงมีปัญหาใหญ่ในอดีตที่ไม่ไกลเกินไปเมื่อการตั้งค่าซอฟต์แวร์ของตนที่ปรับแต่งเพื่อให้เศรษฐกิจเติบโตไม่ตอบสนองได้ดีเมื่อเศรษฐกิจเริ่มหดตัวหรือหดตัว สิ่งเช่นนี้เกิดขึ้นเมื่อคุณไม่เข้าใจว่าการคำนวณ (ซอฟต์แวร์) ของคุณกำลังทำอยู่จริง หากพวกเขาเข้าใจระบบการคาดการณ์ของพวกเขาพวกเขาจะได้รู้ว่าพวกเขาต้องการที่จะก้าวกระโดดและเปลี่ยนแปลงบางอย่างเมื่อมีการเปลี่ยนแปลงทางธุรกิจอย่างฉับพลันอย่างฉับพลัน ดังนั้นคุณจึงมีพื้นฐานของการเรียบอธิบายอธิบาย ต้องการทราบข้อมูลเพิ่มเติมเกี่ยวกับการใช้การคำนวณหากำไรในการคาดการณ์ที่แท้จริงโดยดูที่การจัดการพื้นที่โฆษณาในหนังสือของฉัน สำเนาลิขสิทธิ์ เนื้อหาใน InventoryOps ได้รับการคุ้มครองลิขสิทธิ์และไม่สามารถเผยแพร่ได้ Dave Piasecki เป็นเจ้าของการดำเนินงานของ Inventory Operations Consulting LLC บริษัท ที่ปรึกษาที่ให้บริการเกี่ยวกับการจัดการสินค้าคงคลังการจัดการวัสดุและการดำเนินงานคลังสินค้า เขามีประสบการณ์มากกว่า 25 ปีในการบริหารจัดการการดำเนินงานและสามารถเข้าถึงได้จากเว็บไซต์ของเขา (inventoryops) ซึ่งเขามีข้อมูลที่เกี่ยวข้องเพิ่มเติม บทความที่ให้การสนับสนุนทางธุรกิจของฉัน BusinessTC2000 ค่าเฉลี่ยการเคลื่อนที่ถ่วงน้ำหนักด้านหน้า (FWMA) (v16) การคำนวณค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักด้านหน้าค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักก่อนหน้าจะไม่ได้สร้างขึ้นในภาษาสูตรเกณฑ์ส่วนบุคคล แต่การสร้าง FWMA ใน PCF ค่อนข้างตรงไปตรงมา ค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักด้านหน้าจะคำนวณโดยใช้แถบช่วงของข้อมูล ดังนั้นค่าเฉลี่ยถ่วงน้ำหนักในการเคลื่อนที่ถ่วงน้ำหนัก 2 ช่วงก่อนหน้าต้องใช้ข้อมูล 2 บาร์ในการคำนวณและค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักเฉลี่ย 30 ช่วงก่อนใช้ 30 บาร์ในการคำนวณ ค่าเฉลี่ยเคลื่อนที่เรียกว่า front weighted เนื่องจากข้อมูลที่ใหม่กว่าจะได้รับน้ำหนักมากกว่าข้อมูลที่เก่ากว่าในการคำนวณ แถบที่เก่ากว่าจะลดปัจจัยที่ใช้สำหรับการคำนวณเป็น 1 เมื่อคุณไม่นับส่วนที่ใช้สำหรับการคำนวณทั้งหมด แถบใหม่ล่าสุดจะถูกคูณด้วยระยะเวลาและแต่ละแถบเก่าจะลดค่านี้ลงจนกว่าข้อมูลที่เก่าที่สุดที่ใช้ในการคำนวณจะคูณด้วย 1 ผลลัพธ์จะถูกหารด้วยผลรวมของปัจจัยที่ใช้สำหรับแต่ละแถบ ดังนั้นค่าเฉลี่ยถ่วงน้ำหนักย้อนหลังของค่าเฉลี่ยถ่วงน้ำหนัก 2 ช่วงหน้าสามารถคำนวณได้ดังนี้ (2 C 1 C1) (2 1) ซึ่งสามารถอธิบายได้ดังต่อไปนี้ และค่าเฉลี่ยถ่วงน้ำหนักย้อนหลังของช่วงเวลา 3 ช่วงหน้าสามารถคำนวณได้ดังนี้ (3 C 2 C1 1 C2) (3 2 1) ซึ่งสามารถอธิบายได้ดังต่อไปนี้ (3 C 2 C1 C2) 6 รูปแบบนี้ยังคงเป็นระยะเวลาที่เพิ่มขึ้น
No comments:
Post a Comment