Monday, 21 August 2017

การพยากรณ์ โดยใช้ การเคลื่อนไหว ค่าเฉลี่ย ตัวอย่างเช่น


ค่าเฉลี่ยเคลื่อนที่ตัวอย่างนี้สอนวิธีคำนวณค่าเฉลี่ยเคลื่อนที่ของชุดเวลาใน Excel ค่าเฉลี่ยเคลื่อนที่จะใช้เพื่อทำให้เกิดความผิดปกติ (ยอดเขาและหุบเขา) เพื่อรับรู้แนวโน้มได้ง่ายขึ้น 1. ขั้นแรกให้ดูที่ซีรี่ส์เวลาของเรา 2. ในแท็บข้อมูลคลิกการวิเคราะห์ข้อมูล หมายเหตุ: ไม่สามารถหาปุ่ม Data Analysis คลิกที่นี่เพื่อโหลด Add-in Analysis ToolPak 3. เลือก Moving Average และคลิก OK 4. คลิกที่กล่อง Input Range และเลือกช่วง B2: M2 5. คลิกที่ช่อง Interval และพิมพ์ 6. 6. คลิกที่ Output Range box และเลือก cell B3 8. วาดกราฟของค่าเหล่านี้ คำอธิบาย: เนื่องจากเราตั้งค่าช่วงเป็น 6 ค่าเฉลี่ยเคลื่อนที่คือค่าเฉลี่ยของ 5 จุดข้อมูลก่อนหน้าและจุดข้อมูลปัจจุบัน เป็นผลให้ยอดเขาและหุบเขาจะเรียบออก กราฟแสดงแนวโน้มที่เพิ่มขึ้น Excel ไม่สามารถคำนวณค่าเฉลี่ยเคลื่อนที่สำหรับจุดข้อมูล 5 จุดแรกได้เนื่องจากไม่มีจุดข้อมูลก่อนหน้านี้เพียงพอ 9. ทำซ้ำขั้นตอนที่ 2 ถึง 8 สำหรับช่วงที่ 2 และช่วงที่ 4 ข้อสรุป: ช่วงที่ใหญ่กว่ายอดเนินและหุบเขาจะยิ่งเรียบขึ้น ระยะห่างที่สั้นลงค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่จะใกล้เคียงกับจุดข้อมูลที่แท้จริงมากขึ้นหมายเหตุ - OR เป็นชุดของบันทึกย่อเบื้องต้นในหัวข้อที่อยู่ภายใต้หัวเรื่องกว้าง ๆ ของงานวิจัยการดำเนินงาน (OR) พวกเขาถูกใช้โดยฉันในเบื้องต้นหรือหลักสูตรที่ฉันให้ที่อิมพีเรียลคอลเลจ ตอนนี้พวกเขาพร้อมใช้งานสำหรับนักเรียนและครูที่สนใจในหรือภายใต้เงื่อนไขต่อไปนี้ คุณสามารถดูหัวข้อทั้งหมดที่มีอยู่ใน OR-Notes ได้ที่นี่ ตัวอย่างการคาดการณ์ตัวอย่างการคาดการณ์ตัวอย่าง 1996 UG ความต้องการผลิตภัณฑ์ในแต่ละ 5 เดือนล่าสุดแสดงไว้ด้านล่าง ใช้ค่าเฉลี่ยเคลื่อนที่สองเดือนเพื่อสร้างการคาดการณ์สำหรับความต้องการในเดือน 6 ​​ใช้การปรับให้เรียบแบบเสวนากับค่าคงที่ที่ราบเรียบเป็น 0.9 เพื่อสร้างการคาดการณ์สำหรับความต้องการสำหรับความต้องการในเดือนที่ 6 ซึ่งจากทั้งสองการคาดการณ์ที่คุณชอบและทำไมการย้ายสองเดือน ค่าเฉลี่ยสำหรับเดือนที่สองถึงห้าจะได้รับโดย: การคาดการณ์สำหรับเดือนที่หกเป็นเพียงค่าเฉลี่ยเคลื่อนที่ของเดือนก่อนหน้านั่นคือค่าเฉลี่ยเคลื่อนที่สำหรับเดือน 5 m 5 2350 การใช้การเพิ่มความล้าสมัยโดยมีค่าคงที่ที่ราบเรียบที่ 0.9 เราได้รับ: การคาดการณ์สำหรับเดือนที่หกเป็นเพียงค่าเฉลี่ยสำหรับเดือน 5 M 5 2386 เมื่อต้องการเปรียบเทียบสองการคาดการณ์เราจะคำนวณค่าเฉลี่ยเบี่ยงเบนความเบี่ยงเบน (MSD) ถ้าเราทำเช่นนี้เราจะพบว่าสำหรับค่าเฉลี่ยเคลื่อนที่ของ MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16.67 และสำหรับค่าเฉลี่ยที่ได้รับความราบเรียบแบบเรียงลำดับด้วยค่าคงที่ที่ราบเรียบเท่ากับ 0.9 MSD (13 - 17) sup2 (16.60 - 19) sup2 (18.76 - 23) sup2 (22.58 - 24) sup24 10.44 โดยรวมแล้วเราจะเห็นว่าการทำให้เรียบเป็นทวีคูณดูเหมือนจะให้การคาดการณ์ล่วงหน้าหนึ่งเดือนที่ดีที่สุดเนื่องจากมี MSD ที่ต่ำลง ดังนั้นเราจึงชอบการคาดการณ์ของ 2386 ที่ได้รับการผลิตโดยการทำให้เรียบแบบทวีคูณ การคาดการณ์ตัวอย่างเช่นการทดสอบ UG ในปี 2537 ตารางด้านล่างแสดงถึงความต้องการใช้เครื่องโกนหนวดใหม่ในร้านในช่วง 7 เดือนที่ผ่านมา คำนวณค่าเฉลี่ยเคลื่อนที่สองเดือนสำหรับเดือนที่สองถึงเจ็ด อะไรคือการคาดการณ์ของคุณสำหรับความต้องการในเดือนที่แปดใช้เรียบเรียงชี้แจงด้วยค่าคงที่ราบเรียบของ 0.1 เพื่อคาดการณ์สำหรับความต้องการในเดือนที่แปด การคาดการณ์ใดในสองเดือนที่แปดที่คุณชอบและเหตุใดผู้ดูแลร้านจึงเชื่อว่าลูกค้าจะเปลี่ยนมาใช้ผลิตภัณฑ์หลังการขายใหม่จากแบรนด์อื่น ๆ อภิปรายเกี่ยวกับวิธีการสร้างแบบจำลองพฤติกรรมการสลับนี้และระบุข้อมูลที่คุณต้องการเพื่อยืนยันว่าการสลับนี้เกิดขึ้นหรือไม่ ค่าเฉลี่ยเคลื่อนที่สองเดือนสำหรับเดือนที่สองถึงเจ็ดจะได้รับโดย: การคาดการณ์สำหรับเดือนที่แปดเป็นเพียงค่าเฉลี่ยเคลื่อนที่สำหรับเดือนก่อนหน้านั่นคือค่าเฉลี่ยเคลื่อนที่สำหรับเดือนที่ 7 m 7 46 ใช้การคำนวณหากำไรให้เรียบโดยมีค่าคงที่ที่ราบเรียบเท่ากับ 0.1 รับ: เป็นก่อนที่การคาดการณ์สำหรับเดือนแปดเป็นเพียงค่าเฉลี่ยสำหรับเดือน 7 7 7 31.11 (ที่เราไม่สามารถมีความต้องการเศษ) เมื่อต้องการเปรียบเทียบสองการคาดการณ์เราจะคำนวณส่วนเบี่ยงเบนเฉลี่ย (MSD) ถ้าเราทำเช่นนี้เราพบว่าสำหรับค่าเฉลี่ยเคลื่อนที่และค่าเฉลี่ยที่ได้รับความราบรื่นแบบจำลองที่มีค่าคงที่ที่ราบเรียบเท่ากับ 0.1 โดยรวมแล้วเราจะเห็นว่าค่าเฉลี่ยเคลื่อนที่สองเดือนมีแนวโน้มที่ดีที่สุดในการคาดการณ์ล่วงหน้าหนึ่งเดือนเนื่องจากมีค่า MSD ที่ต่ำลง ดังนั้นเราจึงชอบการคาดการณ์ของ 46 ที่ได้รับการผลิตโดยค่าเฉลี่ยเคลื่อนที่สองเดือน เพื่อตรวจสอบการเปลี่ยนเราจะต้องใช้รูปแบบกระบวนการ Markov ที่แบรนด์รัฐและเราจะต้องมีข้อมูลสถานะเบื้องต้นและความน่าจะเป็นของลูกค้าเปลี่ยน (จากการสำรวจ) เราจำเป็นต้องใช้แบบจำลองข้อมูลย้อนหลังเพื่อดูว่าเรามีความเหมาะสมระหว่างแบบจำลองและพฤติกรรมทางประวัติศาสตร์หรือไม่ การคาดการณ์ตัวอย่างเช่นการทดสอบ UG ในปี 2535 ตารางด้านล่างแสดงความต้องการใช้มีดโกนเฉพาะในร้านค้าสำหรับแต่ละช่วง 9 เดือนที่ผ่านมา คำนวณค่าเฉลี่ยเคลื่อนที่สามเดือนสำหรับเดือนที่สามถึงเก้า สิ่งที่คาดหวังของคุณสำหรับความต้องการในเดือนสิบใช้เรียบเรียงชี้แจงด้วยค่าคงที่ราบเรียบของ 0.3 เพื่อคาดการณ์สำหรับความต้องการในเดือนสิบ การคาดการณ์ใดในเดือนที่สิบสองที่คุณชอบและเหตุผลที่ค่าเฉลี่ยเคลื่อนที่ 3 เดือนสำหรับเดือนที่ 3 ถึง 9 จะได้จาก: การคาดการณ์สำหรับเดือน 10 เป็นเพียงค่าเฉลี่ยเคลื่อนที่ของเดือนก่อนหน้านั่นคือค่าเฉลี่ยเคลื่อนที่สำหรับเดือน 9 เมตร 9 20.33 ดังนั้นการคาดการณ์สำหรับเดือนที่ 10 คือ 20. ใช้การคำนวณหาค่าเฉลี่ยแบบเสวนาโดยมีค่าคงที่ที่ราบเรียบเท่ากับ 0.3 ที่เราได้รับ: ก่อนที่การคาดการณ์สำหรับเดือน 10 จะเป็นค่าเฉลี่ยสำหรับเดือนที่ 9 M 9 18.57 19 (ตามที่เรา ไม่สามารถมีความต้องการเศษ) เมื่อต้องการเปรียบเทียบสองการคาดการณ์เราจะคำนวณส่วนเบี่ยงเบนเฉลี่ย (MSD) ถ้าเราทำเช่นนี้เราพบว่าสำหรับค่าเฉลี่ยเคลื่อนที่และค่าเฉลี่ยที่ได้รับการทำให้เรียบโดยมีค่าคงที่ที่ราบเรียบของ 0.3 โดยรวมแล้วเราจะเห็นว่าค่าเฉลี่ยเคลื่อนที่ 3 เดือนมีแนวโน้มที่ดีที่สุดในการคาดการณ์ล่วงหน้าหนึ่งเดือนเนื่องจากมีค่า MSD ที่ต่ำลง ดังนั้นเราจึงชอบการคาดการณ์ของ 20 ที่ได้รับการผลิตโดยค่าเฉลี่ยเคลื่อนที่สามเดือน การคาดการณ์ตัวอย่างเช่นการทดสอบ UG ในปีพ. ศ. 2534 ตารางด้านล่างแสดงถึงความต้องการเครื่องแฟกซ์เฉพาะในห้างสรรพสินค้าในแต่ละสิบสองเดือนที่ผ่านมา คำนวณค่าเฉลี่ยเคลื่อนที่สี่เดือนสำหรับเดือนที่ 4 ถึง 12 ปีการคาดการณ์ของคุณสำหรับความต้องการในเดือนที่ 13 ใช้การปรับให้เรียบแบบเสวนาโดยมีค่าคงที่ที่ราบเรียบ 0.2 เพื่อพยากรณ์ความต้องการในเดือนที่ 13 ซึ่งจะมีการคาดการณ์สองเดือน 13 คุณชอบและทำไมปัจจัยอื่น ๆ ที่ไม่ได้พิจารณาในการคำนวณข้างต้นอาจมีผลต่อความต้องการเครื่องแฟกซ์ในเดือนที่ 13 ค่าเฉลี่ยเคลื่อนที่ 4 เดือนสำหรับเดือนที่ 4 ถึง 12 จะได้จาก: m 4 (23 19 15 12) 4 17.25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24.75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30.5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35.75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46.25 การคาดการณ์ในเดือนที่ 13 เป็นเพียงค่าเฉลี่ยเคลื่อนที่ของเดือนก่อนหน้านั่นคือค่าเฉลี่ยเคลื่อนที่ เดือน 12 ม. 12 46.25 ดังนั้นตามที่คาดการณ์ไว้สำหรับเดือนที่ 13 คือ 46 ใช้ค่าความละเอียดที่เป็นลําชี้โดยมีค่าคงที่ที่ราบเรียบเท่ากับ 0.2 เราได้รับ: ก่อนหน้าการคาดการณ์สำหรับเดือนที่ 13 เป็นเพียงค่าเฉลี่ยสำหรับเดือนที่ 12 M 12 38.618 39 (ตามที่เรา ไม่สามารถมีความต้องการเศษ) เมื่อต้องการเปรียบเทียบสองการคาดการณ์เราจะคำนวณส่วนเบี่ยงเบนเฉลี่ย (MSD) ถ้าเราทำเช่นนี้เราพบว่าสำหรับค่าเฉลี่ยเคลื่อนที่และค่าเฉลี่ยที่ได้รับการทำให้เรียบโดยมีค่าคงที่ที่ราบเรียบจาก 0.2 โดยรวมเราจะเห็นว่าค่าเฉลี่ยเคลื่อนที่สี่เดือนมีแนวโน้มที่ดีที่สุดในการคาดการณ์ล่วงหน้าหนึ่งเดือนเนื่องจากมีค่า MSD ที่ต่ำลง ดังนั้นเราจึงชอบการคาดการณ์ของ 46 ที่ได้รับการผลิตโดยค่าเฉลี่ยเคลื่อนที่สี่เดือน ความต้องการตามฤดูกาลการเปลี่ยนแปลงราคาโฆษณาทั้งแบรนด์นี้และยี่ห้ออื่น ๆ สถานการณ์ทางเศรษฐกิจทั่วไปเทคโนโลยีใหม่การพยากรณ์เช่นการทดสอบ UG ในปี 1989 ตารางด้านล่างแสดงความต้องการใช้เตาไมโครเวฟในห้างสรรพสินค้าเฉพาะในแต่ละสิบสองเดือนที่ผ่านมา คำนวณค่าเฉลี่ยเคลื่อนที่ 6 เดือนสำหรับแต่ละเดือน สิ่งที่จะคาดการณ์สำหรับความต้องการในเดือน 13 ใช้เรียบเรียงชี้แจงด้วยค่าคงที่ราบเรียบของ 0.7 เพื่อคาดการณ์ความต้องการในเดือน 13 ซึ่งจากสองคาดการณ์สำหรับเดือน 13 ที่คุณชอบและทำไมตอนนี้เราไม่สามารถคำนวณหก เดือนจนกว่าเราจะมีข้อสังเกตอย่างน้อย 6 ข้อกล่าวคือเราสามารถคำนวณค่าเฉลี่ยดังกล่าวได้ตั้งแต่เดือนที่ 6 เป็นต้นไปเท่านั้น ดังนั้นเราจึงมี: m 6 (34 32 30 29 31 27) 6 30.50 m 7 (36 34 32 30 29 31) 6 32.00 m 8 (35 36 34 32 30 29) 6 32.67 m 9 (37 35 36 34 32 30) 6 34.00 m 10 (39 37 35 36 34 32) 6 35.50 m 11 (40 39 37 35 36 34) 6 36.83 m 12 (42 40 39 37 35 36) 6 38.17 ประมาณการสําหรับเดือนที่ 13 เปนคาเฉลี่ยเคลื่อนที่สําหรับ เดือนก่อนหน้านั่นคือค่าเฉลี่ยเคลื่อนที่ของเดือน 12 ม. 12 38.17 ดังนั้นเราจึงคาดการณ์ว่าค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ของค่าเฉลี่ยจะเป็นค่าเฉลี่ยของซีรีส์เวลาถ้าค่าเฉลี่ยอยู่ที่ประมาณเท่ากัน คงที่หรือค่อยๆเปลี่ยนไป ในกรณีของค่าเฉลี่ยคงที่ค่าที่มากที่สุดของ m จะให้ค่าประมาณที่ดีที่สุดของค่าเฉลี่ยต้นแบบ ระยะสังเกตอีกต่อไปจะเป็นค่าเฉลี่ยของผลกระทบของความแปรปรวน วัตถุประสงค์ของการให้ m ที่มีขนาดเล็กคือการให้การคาดการณ์เพื่อตอบสนองต่อการเปลี่ยนแปลงในกระบวนการอ้างอิง เพื่อแสดงให้เห็นว่าเราเสนอชุดข้อมูลที่รวมการเปลี่ยนแปลงค่าเฉลี่ยที่แท้จริงของชุดข้อมูลเวลา ภาพแสดงชุดข้อมูลเวลาที่ใช้สำหรับการแสดงภาพพร้อมกับความต้องการเฉลี่ยที่สร้างขึ้น ค่าเฉลี่ยเริ่มต้นเป็นค่าคงที่ที่ 10 เริ่มต้นที่ 21 เวลาจะเพิ่มขึ้นโดยหนึ่งหน่วยในแต่ละช่วงเวลาจนกว่าจะถึงค่า 20 ในเวลา 30 จากนั้นจะกลายเป็นค่าคงที่อีกครั้ง ข้อมูลจะถูกจำลองด้วยการเพิ่มค่าเฉลี่ยเสียงสุ่มจากการแจกแจงแบบปกติที่มีค่าเป็นศูนย์และส่วนเบี่ยงเบนมาตรฐาน 3. ผลการจำลองจะปัดเป็นจำนวนเต็มใกล้ที่สุด ตารางแสดงการสังเกตแบบจำลองที่ใช้สำหรับตัวอย่าง เมื่อเราใช้ตารางเราต้องจำไว้ว่าในเวลาใดก็ตามข้อมูลที่ผ่านมาเป็นที่รู้จักเท่านั้น การประมาณค่าพารามิเตอร์ของโมเดลสำหรับค่าที่แตกต่างกันสามค่าของ m จะแสดงพร้อมกับค่าเฉลี่ยของชุดข้อมูลเวลาในรูปด้านล่าง ตัวเลขนี้แสดงค่าประมาณเฉลี่ยเคลื่อนที่ของค่าเฉลี่ยในแต่ละครั้งและไม่ใช่การคาดการณ์ การคาดการณ์จะเปลี่ยนเส้นโค้งค่าเฉลี่ยเคลื่อนที่ไปทางขวาตามช่วงเวลา หนึ่งข้อสรุปจะเห็นได้ชัดทันทีจากรูป สำหรับทั้งสามค่าประมาณค่าเฉลี่ยเคลื่อนที่จะล่าช้ากว่าเส้นตรงโดยมีความล่าช้าเพิ่มขึ้นจาก m ความล่าช้าคือระยะห่างระหว่างรูปแบบกับการประมาณในมิติเวลา เนื่องจากความล่าช้าค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ต่ำกว่าข้อสังเกตเป็นค่าเฉลี่ยจะเพิ่มขึ้น ความลำเอียงของตัวประมาณคือความแตกต่างในเวลาที่กำหนดในค่าเฉลี่ยของแบบจำลองและค่าเฉลี่ยที่คำนวณโดยค่าเฉลี่ยเคลื่อนที่ ความอคติเมื่อค่าเฉลี่ยเพิ่มขึ้นเป็นลบ สำหรับค่าเฉลี่ยที่ลดลงอคติเป็นบวก ความล่าช้าในเวลาและอคติที่นำมาใช้ในการประมาณค่านี้เป็นหน้าที่ของ m ค่าที่มากขึ้นของ m ยิ่งใหญ่ขนาดของความล่าช้าและอคติ สำหรับซีรีส์ที่เพิ่มขึ้นอย่างต่อเนื่องโดยมีแนวโน้ม a. ค่าของความล่าช้าและความลำเอียงของ estimator ของค่าเฉลี่ยจะได้รับในสมการด้านล่าง เส้นโค้งตัวอย่างไม่ตรงกับสมการเหล่านี้เนื่องจากตัวอย่างไม่ได้เพิ่มขึ้นอย่างต่อเนื่องแทนที่จะเริ่มเป็นค่าคงที่เปลี่ยนเป็นแนวโน้มและจะกลายเป็นค่าคงที่อีกครั้ง นอกจากนี้เส้นโค้งตัวอย่างยังได้รับผลกระทบจากเสียงดัง การคาดการณ์ค่าเฉลี่ยของช่วงเวลาในอนาคตจะแสดงโดยการขยับเส้นโค้งไปทางขวา ความล่าช้าและความลำเอียงเพิ่มขึ้นตามสัดส่วน สมการด้านล่างแสดงถึงความล่าช้าและความลำเอียงของระยะเวลาคาดการณ์ในอนาคตเมื่อเทียบกับพารามิเตอร์ของโมเดล อีกครั้งสูตรเหล่านี้เป็นชุดเวลาที่มีแนวโน้มเชิงเส้นคงที่ เราไม่ควรแปลกใจที่ผลลัพธ์นี้ ตัวประมาณค่าเฉลี่ยเคลื่อนที่อยู่บนพื้นฐานสมมติฐานค่าเฉลี่ยคงที่และตัวอย่างมีแนวโน้มเป็นเส้นตรงตามค่าเฉลี่ยในช่วงระยะเวลาการศึกษา เนื่องจากชุดข้อมูลเรียลไทม์จะไม่ค่อยตรงตามสมมติฐานของรูปแบบใดก็ตามเราควรเตรียมพร้อมสำหรับผลลัพธ์ดังกล่าว นอกจากนี้เรายังสามารถสรุปจากรูปที่ความแปรปรวนของเสียงรบกวนมีผลมากที่สุดสำหรับขนาดเล็ก ค่าประมาณมีความผันผวนมากขึ้นสำหรับค่าเฉลี่ยเคลื่อนที่ที่ 5 กว่าค่าเฉลี่ยเคลื่อนที่ของ 20 เรามีความต้องการที่ขัดแย้งกันในการเพิ่ม m เพื่อลดผลกระทบของความแปรปรวนเนื่องจากเสียงรบกวนและลด m เพื่อให้การคาดการณ์ตอบสนองต่อการเปลี่ยนแปลงได้มากขึ้น ในความหมาย ข้อผิดพลาดคือความแตกต่างระหว่างข้อมูลจริงกับค่าคาดการณ์ ถ้าชุดข้อมูลเวลาเป็นค่าคงที่มูลค่าที่คาดไว้ของข้อผิดพลาดจะเป็นศูนย์และความแปรปรวนของข้อผิดพลาดจะประกอบด้วยคำที่เป็นหน้าที่ของและคำที่สองซึ่งเป็นความแปรปรวนของเสียง คำที่หนึ่งคือค่าความแปรปรวนของค่าเฉลี่ยที่ประมาณด้วยตัวอย่างของการสังเกตการณ์ m สมมติว่าข้อมูลมาจากประชากรที่มีค่าเฉลี่ยคงที่ ระยะนี้จะลดลงโดยทำให้ m มีขนาดใหญ่ที่สุด m ที่มีขนาดใหญ่ทำให้การคาดการณ์ไม่ตอบสนองต่อการเปลี่ยนแปลงชุดข้อมูลอ้างอิง เพื่อให้การคาดการณ์สามารถตอบสนองต่อการเปลี่ยนแปลงได้เราต้องการให้ m มีขนาดเล็กที่สุด (1) แต่จะเพิ่มความแปรปรวนของข้อผิดพลาด การคาดการณ์ในทางปฏิบัติต้องมีค่ากลาง การคาดการณ์ด้วย Excel การคาดการณ์ add-in จะใช้สูตรค่าเฉลี่ยเคลื่อนที่ ตัวอย่างด้านล่างแสดงการวิเคราะห์โดย add-in สำหรับข้อมูลตัวอย่างในคอลัมน์ B 10 ข้อสังเกตแรกมีการจัดทำดัชนี -9 ถึง 0 เมื่อเทียบกับตารางด้านบนดัชนีระยะเวลาจะเปลี่ยนไป -10 การสังเกตสิบข้อแรกให้ค่าเริ่มต้นสำหรับการประมาณและใช้คำนวณค่าเฉลี่ยเคลื่อนที่สำหรับช่วงเวลา 0 คอลัมน์ MA (10) (C) แสดงค่าเฉลี่ยเคลื่อนที่ที่คำนวณได้ ค่าเฉลี่ยเคลื่อนที่ m อยู่ในเซลล์ C3 คอลัมน์ Fore (1) (D) จะแสดงการคาดการณ์สำหรับระยะเวลาหนึ่งในอนาคต ช่วงคาดการณ์อยู่ในเซลล์ D3 เมื่อช่วงคาดการณ์มีการเปลี่ยนแปลงไปเป็นจำนวนที่มากขึ้นตัวเลขในคอลัมน์ Fore จะถูกเลื่อนลง คอลัมน์ Err (1) (E) แสดงความแตกต่างระหว่างการสังเกตและการคาดการณ์ ตัวอย่างเช่นการสังเกตในเวลาที่ 1 คือ 6 ค่าที่คาดการณ์ไว้จากค่าเฉลี่ยเคลื่อนที่ในช่วงเวลา 0 คือ 11.1 ข้อผิดพลาดคือ -5.1 ค่าเบี่ยงเบนมาตรฐานและค่าเฉลี่ยส่วนเบี่ยงเบนเฉลี่ย (MAD) คำนวณในเซลล์ E6 และ E7 ตามลำดับ

No comments:

Post a Comment